N94- 35062

Intelligent Resources for Satellite Ground Control Operations

Patricia M. Jones
University of Illinois at Urbana-Champaign
Department of Mechanical and Industrial Engineering
1206 W. Green St., Urbana IL 61801
217-333-3938 (Voice)
217-244-6534 (Fax)
pmj@ux].cso.uiuc.edu (email)

Keywords: knowledge-based spacecraft command and control; intelligent user interfaces
ABSTRACT

This paper describes a cooperative approach to the design of intelligent automation and
describes the Mission Operations Cooperative Assistant for NASA Goddard flight
operations. The cooperative problem solving approach is being explored currently in the
context of providing support for human operator teams and also in the definition of future
advanced automation in ground control systems.

INTRODUCTION

The increasing sophistication and complexity of satellite ground contro] operations requires
new approaches to the design of ground control systems. One approach to providing
intelligent assistance to operators in real-time control tasks is via an intelligent cooperative
problem solving system. Unlike the traditional expert system that queries the user, detects
problems, and offers advice, the cooperative problem solving approach advocates
providing a variety of flexible intelligent resources to the human operator (Woods, 1986
Jones, 1991; Jones and Mitchell, 1993).

A theory of human-computer cooperative problem solving proposed by Jones
(Jones, 1991; Jones and Mitchell, 1993) provides high-level design guidelines for the
development of intelligent cooperative autoration. These principles advocate human
authority, mutual intelligibility, openness and honesty, multiple perspectives, and the
management of trouble. In short, the human operator(s) should retain locus of control in
interaction and decision making, and the intelligent automation should be obvious,
inspectable, unambiguous, provide multiple views of the situation, and provide support
for varying levels of help and expertise.

The rest of this paper will focus on the modeling, representation, and architecture of
an existing prototype cooperative problem solver system and current research on defining
new requirements and architectures for intelligent cooperative support.

THE MISSION OPERATIONS
COOPERATIVE ASSISTANT

A prototype cooperative problem solver system, the Georgia Tech Mission Operations
Cooperative Assistant (GT-MOCA, hereafter referred to as MOCA), was developed for the
context of NASA Goddard real-time flight operations and was experimentally evaluated
with ERBS and COBE flight analysts in the context of a high-fidelity real-time interactive
simulation of MOCA provides an interactive normative operator model, messages, and
interactive graphics to be utilized in conjunction with the operator's existing work
environment. In particular, the interactive normative model provides a visualization of the
content and structure of current expected activities and allows operators to query this
representation and also delegate activities to MOCA.

PRACEDING PAGE BLANK NOT FliLMED 233

i1

MOCA is based on the operator function model (OFM) (Mitchell, 1987) and the
OFMspert architecture (Rubin, Jones, and Mitchell, 1988). The operator function model is
a heterarchic-hierarchic network model that specifies activities at various levels of
abstraction and the actions needed to successfully accomplish those activities. Activities
and actions are nodes in the OFM network, and arcs represent system triggering events or
the successful completion of activity. The OFM is implemented as a blackboard
architecture that forms the basis of intent inferencing (Rubin, Jones, and Mitchell, 1988).
Here, the basic OFMspert components as implemented in MOCA and the MOCA-specific
Cooperative Problem Solver component are described.

Figure 1 illustrates the overall software architecture. The Controlled System
Interface class parses information from the controlled system (in this case, a high-fidelity
interactive simulation) and sends appropriate messages to other OFMspert components.

(OFMspert) <
User
Interface
Controlled |
System
High Level
Controller
Controlled Event Actin
d System [| Queue Blackboard
Interface -
t | y y
Enhanced Normative
Model Cooperative Problem

Solving Module

|

Strategies for

5 managing advice,
St rOperat.or Actions J eir
Space [«
Generate advice objects
T Generate checklists

—>| Control
Environment |

Figure 1. The MOCA architecture.

The State Space class represents the current state of the controlled system. Thus, many of
the classes that are fully implemented in the simulation itself (e.g., classes to represent
spacecraft components) are partially replicated here to provide a modular, efficient
representation of the current system state. The Control Environment class represents the
simulation user interface as a collection of DisplayPanel objects, each of which has a name,

234

a character string denoting what information that panel contains, and an integer denoting
whether or not the panel is currently displayed.

The EnhancedNormativeModel class encapsulates the knowledge of the operator
function model for a particular domain (here, real-time flight operations), where the model
is represented as activity trees (organized functions, subfunctions, and tasks) and actions.
In general, the Enhanced Normative Model contains tables of all these structures and
member functions that are used to instanciate and schedule the removal of activity trees and
actions on the blackboard. Most of this information is file-driven; at the beginning of the
program, the Enhanced Normative Model reads in files that give the structure of the activity
trees (i.e., function-subfunction-task relationships), their supporting actions, and the
structures of all the nodes in the operator function model. The different information and
formats in each file correspond to four classes to represent that information. The class
ActivityTreeStruct represents the model-driven information (i.e., function-subfunction-task
activity trees) of the operator function model. The ActivityTreeStruct class also
encapsulates the alert message associated with each tree. The class ModelTreeStruct is a
subclass of ActivityTreeStruct that also includes the actions associated with each task. The
class ConnectionStruct encapsulates intent inferencing information; i.e., the names of
actions are associated with the names of the tasks which those actions support. Also, the
ConnectionStruct class contains members to represent the "what is" and "how to"
information associated with each action. Finally, the NodeStruct class is used to represent
ActivityNodes. This class represents a node's level, name, type, purpose, and enabling
event as character arrays. This information is used by Enhanced Normative Model
methods for "instanciating” a particular tree.

The Blackboard class of MOCA is essentially the same as previous implementations
of the OFMspert blackboard (Rubin, Jones, and Mitchell, 1988; Chronister, 1990). The
blackboard data structure has four levels: functions, subfunctions, tasks, and actions. The
control structures consist of three lists of events: the clock events list, the problems list,
and the events list. The clock events list is a time-sorted list of events to be done at
prespecified times. The problems list is a list of unconnected actions. The events list is a
list of current events to be processed. The knowledge sources are member functions for
processing events to maintain and update the blackboard. Some extensions were made to
the representation of blackboard nodes. The abstract superclass ActivityNode now also
contains a member denoting the names of the supernodes that this node can connect to,
because subfunctions and tasks as well as actions can be posted and connected to nodes at a
higher level. ActivityNode also contains a new member that describes the enabling event
for its posting (e.g., the Monitor function's enabling event is that telemetry data have begun
to arrive). The subclasses of ActivityNode are FunctionNode, SubfunctionNode,
TaskNode, and ActionNode. The ActionNode class includes "what is" and "how to"
information.

Part of the structure of the Cooperative Problem Solver class is given in Table 1. It
represents message-sending paths with other OFMspert components, the history and
current focus of allocated activities and communicative acts, the current checklist of actions
to be displayed or performed, and an organized collection of declarative information used in
the performance of allocated bookkeeping activities. The Cooperative Problem Solver class
has a number of member functions for the creation and maintenance of these structures.
Besides the behaviors of creating, adding, deleting, and finding items on the various lists,
the Cooperative Problem Solver has a number of key functions that are summarized in
Table 2.

As noted in these tables, significant classes associated with the Cooperative Problem
Solver represent communicative knowledge in the form of communication knowledge
objects (in a similar spirit to context spaces (Reichman, 1985). Class CommunicationKO
represents the communicative act's name, the time it was initiated, the time it was ended, its
initiating and terminating conditions (as described in the main thesis text). its history of
status changes, purpose, priority, and content. Class CommunicationKO has three

235

subclasses that represent specialized types of communicative acts. Class
AdviceReminderKO has an additional member that represents the feedback structure
generated by blackboard assessments. _Class LimitViolationKO has additional members to
represent the status and current value of the associated spacecraft parameter (whose name is

Table 1. Partial structure of Class Cooperative Problem Solver

Member Description

giveAdvice Boolean variable

Denotes whether or not to present advice/reminder
messages to the user. This is the variable that is set
when the user clicks on the "Give Advice" checkbox
on the MOCA main menu.

allocatedFunctions Pointers to an AllocatedActivity object
allocatedSubfunctions
allocatedTasks These members of class CPS denote the heads of linked

lists of AllocatedActivity objects that correspond to the
functions, subfunctions, and tasks allocated to MOCA.

currentConversational- Pointer to a CommunicationKO object

Context
Denotes the communicative act which is the current focus
of processing by MOCA.

currentActivity Pointer to an ActivityKO object
Denotes the activity which is the current focus of
processing by MOCA.

currentAdvice Pointer to an AdviceReminderKO object

Denotes the advice which is the current focus of
processing by MOCA.

currentChecklist Array of 10 character pointers (character strings)

Denotes the current dynamically-generated checklist to
be displayed to the user and/or to be performed by
MOCA.

236

Table 2. Significant member functions of class CooperativeProblemSolver

Member function

Description

propagateResponsibility

When the user allocates an activity node to MOCA,

its responsibility is set to "MOCA". This effect
propagates downward such that the responsibility of
subnodes is also set to "MOCA". Propagation also
occurs upward such that supernodes' responsibility is
either "shared" (if other subnodes of the supernode are
still allocated to the human) or "MOCA" (if all other
subnodes have also been allocated to MOCA).

makeRespCommAct

Given an activity node allocated to MOCA, this
function returns an associated CommunicationKO that
represents the communicative act of "echoing" that act
of delegation.

manageCommunication

This function is the heart of MOCA's management of
communicative acts. Every CommunicationKO that is
created and added to the appropriate list is passed as an
argument to this function. Currently,
manageCommunication sets the CommunicationKO as the
currentConversationalContext, and decides, based on the
purpose of this act, which function to call to generate a
message to the user as shown in the next box.

generateAdvice
generateAlert
generateConfirmation
generateExplanation
generateDetails
generateAcknowledgment

generateLimitViolation-
Message
generateDataDropout-
Message
generateLimitSummary-
Message

The functions called from manageCommunication if the
currentConversationalContext's purpose is, respectively,
to provide ADVICE on missing, out of order, or late
actions; ALERT the wuser that certain functions,
subfunctions, and/or tasks were posted on the blackboard;
CONFIRM that MOCA has performed an action in
response to an activity delegation; EXPLAIN how to do
an action on the dynamic checklist display; ELABORATE
on "what is" an action on the dynamic checklist display;
acknowledge that MOCA received the request to perform
an activity (ACTIVITY_MANAGEMENT); or provide
domain-specific alert messages.

This function places the currentConversationalContext's
content in the appropriate textlist display.

generateDynamicChecklist

Given an activity node for which the user requests
delegation or a checklist, this function queries the
EnhancedNormativeModel to find the actions that
constitute the successful fulfillment of that activity.

generateSpecialChecklist

Given an activity node for which the user requests
delegation or a checklist, this function examines
context-specific information to generate the appropriate
checklist of actions. For example, if the user requests

a checklist for the TRPBK subfunction, this function
examines the current support characteristics to decide

if the appropriate control actions involve Tape Recorder |
or Tape Recorder 2 (i.e., the list may be TR1ISTBY and
TRIPBK, or TR2STBY and TR2PBK).

237

i 1

el 11

assigned as the name of the LimitViolationKO). Class DataDropoutKO has the same
structure of a CommunicationKO, but is treated differently; its name represents the type of
data loss (e.g., "fwd link") and its start and end times represent the start and end times of

the data loss.

INTELLIGENT SUPPORT FOR ACTIVITY MANAGEMENT

MOCA provides the basis for further architectures to support human-computer cooperative
problem solving. MOCA's limitations,however, included its lack of integration between the
resources for cooperative problem solving and its lack of support for planning (Jones and
Mitchell, 1993). Currently we are building the Intelligent Support for Activity Management
(ISAM) architecture which addresses these issues (Jones, 1993a, 1993b, Jones and Goyle,
1993: Jones, Patterson, and Goyle, 1993). In particular, activities are represented more
completely by Activity Objects that explicate knowlege of priorities, resources, constraints,
and temporal relationships between activities. Furthermore, the context of activity --
including the current state of the user's "information space" (e.g., displays), current state
of the controlled system, and evolving status of artifacts that both guide activity and are the
result of activity -- is explicitly captured and represented by objects as well. This
architecture is currently under development; a high-level conceptual overview is provided in

Figure 2 below.

Intelligent Support for
Activity Management (ISAM)

Interface User Interface: Interactivé visualization of activities,
their relationships, constraints, resources

:ﬁg"“"e Jnew events update

resources
Current Context Representation Object Knowledge Base
|Blackboard Model of Activ'rtyl | Activity Objects I

Activity Context instartiates Activity Context KB

Information Space Information Objects]
State Space of System] System Objects l
Evolving Artifacts Artifact Objects

Figure 2. ISAM Architecture.

238

ACKNOWLEDGMENTS

This research is supported by grants from NSF (IR192-10918) and NASA Goddard Space
Flight Center (NAGS5-244).

REFERENCES

Chronister, J. A. (1990). MS thesis, School of ISYE, Georgia Institute of Technology.

Jones, P. M. (1993a) Cooperative support for distributed supervisory control: Issues,
requirements, and an example from mission operations. Proceedings of the ACM
Intenational Workshop on Intelligent User Interfaces, 239-242, Orlando, FL
January 1993.

Jones, P. M. (1993b). Cooperative work in mission operations: Analysis and implications
for computer support. Manuscript in preparation.

Jones, P. M. (1991). Human-computer cooperative problem solving in supervisory
control. PhD dissertation, School of ISYE, Georgia Institute of Technology.

Jones, P. M. and Goyle, V. (1993). A field study of TPOCC mission operations:
Knowledge requirements and cooperative work. EPRL-93-05, Engineering
Psychology Research Laboratory, Department of Mechanical and Industrial
Engineering, University of Illinois at Urbana-Champaign.

Jones, P. M. and Mitchell, C. M. (1993). Human-computer cooperative problem solving:
Theory, design, and evaluation of an intelligent operator's associate. Manuscript
accepted for publication to I[EEE Transactions on Systems, Man, and Cybernetics.

Jones, P. M. and Mitchell, C. M. (1991a). A mechanism for knowledge-based reminding
and advice-giving in the supervisory control of complex dynamic systems. Proc. of
the 1991 IEEE International Conference on Systems, Man, and Cybernetics.

Jones, P. M. and Mitchell, C. M. (1991b). Cooperative interaction in the supervisory
control of complex dynamic systems. Proc. of the 1991 IEEE International
Conference on Systems, Man, and Cybernetics.

Jones, P. M., Mitchell, C. M., and Rubin, K. S. (1988). Intent inferencing with a model-
based operator's associate. Proceedings of the Sixth Symposium on
Empirical Foundations of Information and Software Sciences (249-258).
Atlanta,GA.

Jones, P. M., Mitchell, C. M., and Rubin, K. S. (1990). Validation of intent inferencing
by a model-based operator's associate. International Journal of Man-Machine
Studies, 33, 177-202.

Jones, P. M., Patterson, E. S. and Goyle, V. (1993). Modeling and intelligent aiding
for cooperative work in mission operations. Proc. of the 1993 IEEE International
Conference on Systems, Man, and Cybernetics, Le Touquet, France.

Mitchell, C. M. (1987). GT-MSOCC: A research domain for modeling human-computer
interaction and aiding decision making in supervisory control systems. JEEE
Transactions on Systems, Man, and Cybernetics, SMC-17, 553-570.

Reichman, R. (1985). Getting computers to talk like you and me.

Cambridge, MA: MIT Press.

Rubin, K. S., Jones, P. M. and Mitchell, C. M. (1988). OFMspert: Inference of
operator intentions in supervisory control using a blackboard architecture. JEEE
Transactions on Systems, Man, and Cybernetics, 18, 618-637.

Woods, D. D. (1986a). Cognitive technologies: The design of joint human-machine
cognitive systems. The Al Magazine, 6, 86-92.

239

